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In this paper, new travelling wave solutions in hyperbolic function form and trigonometric function form of the perturbed 
modified KdV equation is successfully found out by using the functional variable method. Due to the good performance of 
the functional variable method, it is believed that this method is a promising technique in handling a wide variety of partial 
differential equations. We checked the correctness of the obtained results by putting them back into the original equation 
with the aid of MAPLE. This provides an extra measure of confidence in the results. 
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1. Introduction 
 
Several powerful methods have been proposed to 

obtain exact solutions of nonlinear partial differential 
equations, such as the modified simple equation method 
[1-54], the extended trial equation method [3-4], the 

sine-cosine function method [5-6], the GG' -expansion 

Method [7-8], the first integral method [9-11], the exp-
function method [12], the Riccati sub method [13-14], 
the modified Kudryashov method [15] and so on [16-
37]. 

It is well known that the modified Korteweg de 
Vries (MKdV) equation is an important nonlinear 
evolution equation, since it arises in applications to the 
dynamics of thin elastic rods [16], phonons in 
anharmonic lattices [17], meandering ocean jets [18], 
traffic congestion [19-20], hyperbolic surfaces [21], and 
ion acoustic solitons [22]. The general form of MKdV 
equation is 
 

0,02   xxxxt uuauu             (1) 

 
where u  represents a real scalar function and a  and   

are two real constants.  
In this paper we consider the perturbed modified 

KdV equation in the form 
 

xxxxxt uuuuauu 42                (2) 

where   is perturbation parameter.  
One can see that if   goes to zero, Eq. (1) transforms 

to the general simplified modified KdV. Eq. (2) was 
introduced by Dey et al. [23] and obtained exact solutions of 
the perturbed modified KdV equation by using some 
appropriate ansatz. The aim of this paper is to find exact 
solution of the perturbed modified KdV equation by the 
functional variable method. 

The rest of this Letter is organized as follows. In 
Section 2, we describe the functional variable method for 
solving differential equations. Section 3 contains the 
application of the method to solve the perturbed modified 
KdV equation. Finally in section 4 some conclusions are 
presented. 
 
 

2. The functional variable method 
 
In [24-25], Zerarka et al. introduced the so-called 

functional variable method to find the exact solutions for a 
wide class of linear and nonlinear wave equations. This 
method will play an important role in expressing the 
traveling wave solutions in terms of hyperbolic, 
trigonometric and the rational functions for the nonlinear 
evolution equations in mathematical physics. The advantage 
of this method is that one treats nonlinear problems by 
essentially linear methods. The functional variable method 
has been successfully applied to many kinds of nonlinear 
differential equations such as, Aminikhah et al., [26] 
proposed the functional variable method to solve the the 
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generalized Drinfel'd-Sokolov-Wilson system, 
Bogoyavlenskii equations and Davey-Sterwatson 
equations. Bekir et al., [27] solved nonlinear time 
fractional KdV, time fmKdV and time-space fractional 
Boussinesq equations by using the functional variable 
method. Nazarzadeh et al., [28] used the functional 
variable method to obtain the exact solutions of the the 
generalized forms of Klein–Gordon equation, the (2+1)-
dimensional Camassa-Holm Kadomtsev-Petviashvili 
equation and the higher-order nonlinear Schrödinger 
equation. Eslami et al., [29] applied the functional 
variable methodto obtain the exact solutions of Davey-
Stewartson equation, generalized Zakharov equation, 

),( nmK  equation with generalized evolution term, 

(2+1)-dimensional long-wave-short-wave resonance 
interaction equation and nonlinear Schrödinger equation 
with power law nonlinearity. 

The general characteristics of the functional 
variable method can be outlined as follows. A nonlinear 
partial differential equation with several independent 
variables can be written in the form of 
 

0,...),,,,,( xxxtttxt uuuuuuP                (3) 

 
where ),( txuu   is the solution of nonlinear partial 

differential equation Eq. (3), the subscript denotes partial 
derivative and P is a polynomial in its arguments. 
Zerarka et al, in [24] has summarized the functional 
variable method in the following.  

First of all, the wave transformation can be written 
as  

vtx                                    (4) 

 
where v  is constant. Next, we can introduce the 
following transformation for a travelling wave solution 
of Eq.  (3), 

)(),( Utxu                             (5) 

 
and the chain 
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Using Eq. (5) and Eq. (6), the nonlinear partial 

differential equation (3) can be transformed into an 
ordinary  differential equation of the form   
 

0,...),,,(  UUUUG                    (7) 

 
Then we make a transformation in which the unknown 

function U  is considered as a functional variable in the 
form 

)(UFU                                  (8) 

then, the solution can be found by the relation 
 

  0)(


UF

dU
                          (9) 

 

here  0  is  a  constant  of  integration  which  is  set  equal  

to  zero  for  convenience.  Some  successive differenciations 
of U  in terms of  F  are given as 
 

)(
2

1 2  FU                            (10-1) 

 

22 )(
2

1
FFU                     (10-2) 

 

])()()[(
2

1 2222  FFFFU          (10-3) 

 

where 
dU

dF
F  , 

2

2

dU

Fd
F   and soon.  

The  ordinary  differential  equations  (5)  can  be  
reduced  in  terms  of  U , F  and  its  derivatives  upon  
using  the expressions of Eq. (10) into Eq. (3) gives 
 

0,...),,,,(  FFFFUG                    (11) 

 
The key idea of this particular form Eq. (11) is of 

special interest because it admits analytical solutions for a  
large  class  of  nonlinear  wave  type  equations.  After  
integration,  Eq.  (11)  provides  the  expression  of  F  and  
this, together with Eq. (8), give appropriate solutions to the 
original problem. 
 
 

3. Exact solutions of the perturbed modified  
    KdV equation 

 
In this Section we obtain traveling wave solutions of 

the perturbed modified KdV equation by using the 
functional variable method described in Section 2.  

Using the transformation )(),( Utxu  , where    

is defined in Eq. (4), the Eq. (2) is carried to a ordinary 
differential equation 
 

0
53

53  UUvUU
                (12) 
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or 

53
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UUU

v
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
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


              (13) 

 
Following Eq. (10), it is easy to deduce from Eq. 

(13) an expression for the function )(UF  
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Integrating Eq. (14) and setting the constant of 

integration to zero yields 
 

642 cUbUaUF                  (15) 
 

where 

v

a  , 


3

b  and 


5

c .  

 
From (15) and (8), we obtain the desired solution as 

[30-31].  

Case 1. If 0a  and 042  acb , then (15) 
admits the following hyperbolic function solution 
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Case 2. If 0a  and 042  acb , then (15) 
admits the following hyperbolic function solution 
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Case 3. If 0a  and 042  acb , then (15) 
admits the following hyperbolic function solution 
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Case 4. If 0a  and 042  acb , then (15) 
admits the following trigonometric function solution 
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Case 5. If 0a , ab 2  and ac )1( 2   , then 

(15) admits the following hyperbolic function solution 
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where 1 .  

Case 6. If 0a , ab 2  and ac )1( 2   , then 

(15) admits the following hyperbolic function solution 
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where 1 .  

Using  the  travelling  wave  transformation  (4)  and  
the  relations  (16-23),  we  obtain  the  following  travelling 
wave solutions of the perturbed modified KdV equation (1) 

If 0

v

 and 0485 2   v , we obtain the 

following hyperbolic function solution ),( txu  
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The solitary wave solution  ),(1 txu   in Eq. (24) is 

shown graphically in Figs. 1. 

If 0

v

 and 0485 2   v , we obtain the 

following hyperbolic function solution ),( txu  
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Fig. 1. The exact solution (2) for 6, 2, 1.5a g= = =ò   

and 1.5.v =  
 
 

If 0

v  and 0485 2   v , we obtain the 

following hyperbolic function solution ),( txu  
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The solitary wave solution ),(6 txu  in Eq. (26) is 

shown graphically in Fig. 2. 

 
Fig. 2. The exact solution (2) for 5, 2a g= =  and 1.2.=ò  

 

If 0

v

 and 0485 2   v , we obtain the 

following trigonometric function solution ),( txu  
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we obtain the following hyperbolic function solution 
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where 1 .  
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where 1 .  

The solution ),(15 txu  in Eq. (31) is represented in          

Fig. 3. 
Remark. The functional variable method definitely 

can be applied to nonlinear partial differential equations 
which can be converted to a second-order ordinary 
differential equation, the travelling wave transformation. 
 
 

4. Conclusion 
 

In this paper, we have seen that two types of exact 
analytical solutions including the hyperbolic function 
solutions and trigonometric function solutions for the 
perturbed modified KdV equation are successfully found 
out via the functional variable method. From our results 
obtained in this paper, we conclude that the functional 
variable method is powerful, effective and convenient 
for nonlinear partial differential equations. Also, the 
solutions of the proposed nonlinear partial differential 
equations in this paper have many potential applications 
in physics and engineering. To the best of our 
knowledge, the solutions obtained in this paper have not 
been reported in literature. 

 

 
Fig. 3. The exact solution (2) for 6, 1, 1.2a g= = =ò  

 and 0.5.s =  
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